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QUANTUM MECHANICS LIVES AND WORKS IN

PHASE-SPACE
The Wigner phase-space quasi-probability distribution function

Three alternate paths to quantization:
1. Hilbert space (Heisenberg, Schrödinger, Dirac)
2. Path integrals (Dirac, Feynman)
3. Wigner’s phase-space distribution function (Wigner 1932;
Groenewold 1946; Moyal 1949; Baker 1958; Fairlie 1964; ...)

f (x, p) =
1

2π

∫

dy ψ∗(x− h̄
2
y) e−iypψ(x +

h̄

2
y).

A special representation of the density matrix (Weyl correspondence).

Useful in describing quantum transport/flows in phase space
; quantum optics; nuclear physics; study of decoherence
(eg, quantum computing)

But also signal processing (time-frequency analysis);
Intriguing mathematical structure of relevance to Lie
Algebras, M-theory,...

A complete, autonomous formulation of QM based on c-number
functions in phase-space, which compose through a special
operation.
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f (x, p) =
1

2π

∫

dy ψ∗(x− h̄
2
y) e−iypψ(x +

h̄

2
y).

Normalized,

∫

dpdxf (x, p) = 1 .

• Real

• Bounded: −2
h ≤ f (x, p) ≤ 2

h (Schwarz Inequality)

• p- or x-projection leads to marginal probability densities:

A spacelike shadow

∫

dpf (x, p) = ρ(x); or else a momentum-space

shadow

∫

dxf (x, p) = σ(p), resp; both positive semidefinite. But

cannot be conditioned on each other. The uncertainty principle is
fighting back ;

• f can, and most often does go negative (Wigner). A hallmark of
interference. “Negative probability” (Bartlett; Moyal; Feynman;
Bracken & Melloy).

Smoothing f by a filter of size larger than h̄ (eg, con-
volving with phase-space Gaussian) results in a positive
semidefinite function: it has been coarsened to a classical distri-
bution (Cartwright, 1975).
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When is a real f (x, p) a bona-fide Wigner function?
When its Fourier transform L-R-factorizes

f̃ (x, y) =

∫

dp eipyf (x, p) = g∗L(x− h̄y/2) gR(x + h̄y/2) ,

( ∂2 ln f̃
∂(x−h̄y/2)∂(x+h̄y/2) = 0), so gL = gR from reality.

• Nevertheless, it is a distribution: it yields expectation values from
phase-space c-number functions.

Given an operator A(x,p) in Weyl’s association rule (1927), =
1

(2π)2
∫

dτdσdxdp A(x, p) exp(iτ (p − p) + iσ(x − x)), the corresponding
phase-space function A(x, p) obtained by p 7→ p, x 7→ x yields that
operator’s expectation value

〈A〉 =

∫

dxdp f (x, p) A(x, p).

Dynamical evolution of f (Moyal):

Liouville’s Thm, ∂tf + {f,H} = 0, quantum generalizes to

∂f

∂t
=
H ? f − f ? H

ih̄
,

based on the ?-product (Groenewold):

? ≡ e
ih̄
2 (
←
∂ x
→
∂ p−

←
∂ p
→
∂ x),

the essentially unique one-parameter (h̄) associative
deformation of Poisson Brackets of classical mechanics. (viz. h̄ → 0).
(Isomorphism: AB = 1

(2π)2
∫

dτdσdxdp(A?B) exp(iτ (p−p)+ iσ(x−x)).)
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Systematic solution of time-dependent equations is usually
predicated on the spectrum of stationary ones. But time-independent
pure-state Wigner functions ?-commute with H .

However, they further obey a more powerful functional ?-genvalue
equation (Fairlie, 1964):

H(x, p) ? f (x, p) = H(x +
ih̄

2

→
∂ p, p−

ih̄

2

→
∂x) f (x, p)

= f (x, p) ? H(x, p) = E f (x, p) ,

which amounts to a complete characterization of them:

For real functions f (x, p), the Wigner form is equivalent to compliance
with the ?-genvalue equation (< and = parts).
(Curtright, Fairlie, & Zachos, Phys Rev D58 (1998) 025002)

=⇒ Projective orthogonality spectral properties

f ? H ? g = Ef f ? g = Eg f ? g.

For Eg 6= Ef , =⇒ f ? g = 0.

Precluding degeneracy, for f = g,

f ? H ? f = Ef f ? f = H ? f ? f,

=⇒ f ? f ∝ f.
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fs ?-project onto their space.

fa ? fb = 1
h δa,b fa.

• The normalization matters (Takabayasi, 1954): despite linearity of
the equations, it prevents superposition of solutions (this is not how
QM interference works here!).

∫

dpdx f ? g =

∫

dpdx fg,

so, for different ?-genfunctions,
∫

dpdx fg = 0.

; Negative values are a feature, not a liability.

NB ;

∫

H(x, p)f (x, p) dxdp = E

∫

f dxdp .

NB ;

∫

f 2 dxdp = 1
h .

• For any function, 〈|g|2〉 need not ≥ 0.

But 〈g∗ ? g〉 ≥ 0 (; the uncertainty principle).
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H Pf
H(x, p) ? f(x, p)

=
1

2π

(

(p− ih̄
2

→
∂x)

2/2m+ V (x)

)

∫

dy e−iy(p+i h̄

2

←

∂ x)ψ∗(x− h̄

2
y) ψ(x+

h̄

2
y)

=
1

2π

∫

dy

(

(p− ih̄
2

→
∂x)

2/2m+ V (x+
h̄

2
y)

)

e−iypψ∗(x− h̄

2
y) ψ(x+

h̄

2
y)

=
1

2π

∫

dy e−iyp
(

(i
→
∂ y +i

h̄

2

→
∂x)

2/2m+ V (x+
h̄

2
y)

)

ψ∗(x− h̄

2
y) ψ(x+

h̄

2
y)

=
1

2π

∫

dy e−iypψ∗(x− h̄

2
y) E ψ(x+

h̄

2
y) =

= E f(x, p);

• Action of the effective differential operators on ψ∗ turns out to be null;

f ? H

=
1

2π

∫

dy e−iyp
(

−(
→
∂ y −

h̄

2

→
∂x)

2/2m+ V (x− h̄

2
y)

)

ψ∗(x− h̄

2
y) ψ(x+

h̄

2
y)

= E f(x, p).

Conversely, the pair of ?-eigenvalue equations dictate, for

f (x, p) =

∫

dy e−iypf̃ (x, y) ,

∫

dy e−iyp


− 1

2m
(
→
∂ y ±

h̄

2

→
∂ x)

2 + V (x± h̄
2
y)− E



 f̃ (x, y) = 0.

; Real solutions of H(x, p) ? f (x, p) = E f (x, p)

(= f (x, p) ? H(x, p)) must be of the Wigner form,

f =

∫

dy e−iypψ∗(x− h̄
2y)ψ(x + h̄

2y)/2π, (s.t. Hψ = Eψ).

The wonderful truth (still!) sinking in: ?-multiplication of
c-number phase-space functions is in complete isomorphism
(Groenewold) to Hilbert-space operator algebra.
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SIMPLE HARMONIC OSCILLATOR

Solve directly for H = (p2 + x2)/2

(with h̄ = 1, m = 1, ω = 1):


(x +
i

2
∂p)

2 + (p− i

2
∂x)

2 − 2E



 f (x, p) = 0.

Mere PDEs! Imaginary part: (x∂p − p∂x)f = 0. ;

f depends on only one variable, z = 4H = 2(x2 + p2). ;
(z

4
− z∂2

z − ∂z − E
)

f (z) = 0.

Set f (z) = exp(−z/2)L(z) =⇒ Laguerre’s eqn


z∂2
z + (1− z)∂z + E − 1

2



L(z) = 0.

Satisfied by Laguerre polynomials, Ln = ez∂n(e−zzn)/n!, for
n = E − 1/2 = 0, 1, 2, ... ; eigen-Wigner-functions are

fn =
(−1)n

π
e−2H Ln(4H); L0 = 1, L1 = 1− 4H,

L2 = 8H2 − 8H + 1, ... ♦ not positive definite.

Oscillator Wigner Function, n=3

x

p

f

x

(∑n fn = 1/2π.)
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Dirac’s Hamiltonian factorization for algebraic solution
carries through intact in ? space:

H =
1

2
(x− ip) ? (x + ip) +

1

2
,

so define
a ≡ 1√

2
(x + ip), a† ≡ 1√

2
(x− ip).

a ? a† − a† ? a = 1 .

?-Fock vacuum:

a ? f0 =
1√
2
(x + ip) ? e−(x2+p2) = 0 .

Associativity of the ?-product permits the customary ladder spectrum
generation; H ? f = f ? H ?-genstates:

fn ∝ (a†?)n f0 (?a)n .

• real, like the Gaussian ground state;

; left-right symmetric;

?-orthogonal for different eigenvalues;

project to themselves, since the Gaussian ground state does,
f0 ? f0 ∝ f0 .
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TIME EVOLUTION

Isomorphism to operator algebras ; associative combinatoric opera-
tions completely analogous to Hilbert space QM

; ?-unitary evolution operator, a “?-exponential”
(BFFLS)

U?(x, p; t) = eitH/h̄? ≡

1 + (it/h̄)H(x, p) +
(it/h̄)2

2!
H ? H +

(it/h̄)3

3!
H ? H ? H + ...,

f (x, p; t) = U−1
? (x, p; t) ? f (x, p; 0) ? U?(x, p; t).

NB Collapse to classical trajectories,

dx

dt
=
x ? H −H ? x

ih̄
= ∂pH = p ,

dp

dt
=
p ? H −H ? p

ih̄
= −∂xH = −x =⇒

x(t) = x cos t + p sin t,

p(t) = p cos t− x sin t.
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=⇒ For SHO the functional form of the Wigner func-
tion is preserved along classical phase-space trajectories
(Groenewold, 1946):

f (x, p; t) = f (x cos t− p sin t, p cos t + x sin t; 0).

Any Wigner distribution rotates uniformly on the phase plane around
the origin, essentially classically, even though it provides a complete
quantum mechanical description.

t

p

x

NB In general, loss of simplicity upon integration in x (or p) to yield
probability densities: the rotation induces shape variations of the
oscillating probability density profile.

Only if (eg, coherent states) a Wigner function configuration has an
additional axial x− p symmetry around its own center, will it possess
an invariant profile upon this rotation, and hence a shape-invariant
oscillating probability density.
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THE WEYL CORRESPONDENCE BRIDGE

Weyl’s correspondence map, by itself, merely provides a change of

representation between phase space and Hilbert space

; Helps contrast classical to quantum mechanics on common
footing.

A(x,p) =
1

(2π)2

∫

dτdσdxdp a(x, p) exp(iτ (p− p) + iσ(x− x)),

Inverse map (Wigner):

a(x, p) =
1

2π

∫

dy e−iyp
〈

x +
h̄

2
y

∣

∣

∣

∣

∣

∣

A(x,p)

∣

∣

∣

∣

∣

∣

x− h̄
2
y
〉

.

PHASE SPACE HILBERT SPACE
a

Weyl−−−→ A

quantum↓ ↓ quantum
a ? b Groenewold−−−−−−−→ AB

classical h̄=0↓ ↓ Bracken h̄=0

ab
Weyl−−−→ A�B

; A plethora of choice-of ordering quantum mechanics problems
reduce to purely ?-product algebraic ones: all deformations (ordering
choices) can be surveyed systematically in phase space.
(Curtright & Zachos, New J Phys 4 (2002) 83.1-83.16
[hep-th/0205063])
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A historical footnote on the landmark publications on phase-space quantization
Implicitly, the bulk of the formulation is contained in Groenewold’s and Moyal’s seminal papers.
But this has been a slow story of emerging connections and chains of ever sharper reformulations,
and confidence in the autonomy of the formulation arose very slowly. As a result, attribution of
critical milestones cannot avoid subjectivity: it cannot automatically highlight merely the earliest
occurence of a construct, unless that has also been compelling enough to yield an “indefinite stay
against confusion” about the logical structure of the formulation.

H Weyl, Z Phys 46 (1927) 1
(also reviewed in his book, The Theory of Groups and Quantum Mechanics, Dover, New York, 1931)
introduces the correspondence of “Weyl-ordered” operators to phase-space (c-number) kernel func-
tions (as well as discrete QM application of Sylvester’s (1883) clock and shift matrices).

J von Neumann, Math Ann 104 (1931) 570-578,
in a technical aside off a study of the uniqueness of Schrödinger’s representation, includes an implicit
version of the ?-product which promotes Weyl’s correspondence rule to full isomorphism between
Weyl-ordered operator multiplication and ?-convolution of kernel functions.

E Wigner, Phys Rev 40 (1932) 749
introduces the eponymous phase-space distribution function controlling quantum mechanical dif-
fusive flow in phase space, on the basis of intuitive arguments. It specifies the time evolution of this
function and applies it to quantum statistical mechanics.

H Groenewold, Physica 12 (1946) 405-460
A seminal but somewhat unappreciated paper which fully understands the Weyl correspondence
and produces the WF as the classical kernel of the density matrix. It reinvents and streamlines von
Neumann’s construct into the standard ?-product, in a systematic exploration of the isomorphism
between Weyl-ordered operator products and their kernel function compositions. It further works
out the harmonic oscillator WF.

J Moyal, Proc Camb Phil Soc 45 (1949) 99-124 amounts to a grand synthesis:
It establishes an independent formulation of quantum mechanics in phase space. It systematically
studies all expectation values of Weyl-ordered operators, and identifies the Fourier transform of
their moment-generating function (their characteristic function) to the Wigner Function. It further
interprets the subtlety of the “negative probability” formalism and reconciles it with the uncertainty
principle. Not least, it recasts the time evolution of the Wigner Function through a deformation
of the Poisson Bracket into the Moyal Bracket (the commutator of ?-products, i.e., the Weyl corre-
spondent of the Heisenberg commutator), and thus opens up the way for a systematic study of the
semiclassical limit. Before publication, Dirac has already been impressed by this work, contrasting
it to his own ideas on functional integration, in Bohr’s Festschrift (P A M Dirac, Rev Mod Phys 17
(1945) 195-199).

T Takabayasi, Prog Theo Phys 11 (1954) 341-373
investigates the fundamental projective normalization condition for pure state Wigner functions, and
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exploits Groenewold’s link to the conventional density matrix formulation. It further illuminates the
diffusion of wavepackets.

G Baker, Phys Rev 109 (1958) 2198-2206
envisions the logical autonomy of the formulation, based on postulating the projective normalization
condition. It resolves measurement subtleties in the correspondence principle and appreciates the
significance of the anticommutator of the ?-product as well, thus shifting emphasis to the ?-product
itself, over and above its commutator.

D Fairlie, Proc Camb Phil Soc 60 (1964) 581-586 (also see W Kundt, Z Nat Forsch a22 (1967) 1333-6; L
Cohen, Jou Math Phys 17 (1976) 1863; J Dahl, pp 557-571 in Energy Storage and Redistribution (J Hinze
(ed), Plenum Press, New York, 1983))
explores the time-independent counterpart to Moyal’s evolution equation, which involves the ?-
product, beyond mere Moyal Bracket equations, and derives (instead of postulating) the projective
orthonormality conditions for the resulting Wigner functions. These now allow for a unique and
full solution of the quantum system, in principle (without any reference to the conventional Hilbert-
space formulation). Thus, autonomy of the formulation is fully recognized.

M Berry, Philos Trans R Soc London A287 (1977) 237
elucidates the subtleties of the semiclassical limit, ergodicity, integrability, and the singularity struc-
ture of Wigner function evolution.

F Bayen, M Flato, C Fronsdal, A Lichnerowicz, and D Sternheimer, Ann Phys 111 (1978) 61-110;
ibid 111-151, analyzes systematically the deformation structure and the uniqueness of the formu-
lation, and consolidates it mathematically. It provides explicit solutions to standard problems and
introduces influential technical innovations, such as the ?-exponential.

T Curtright, D Fairlie, and C Zachos, Phys Rev D58 (1998) 025002
demonstrates more directly the equivalence of the time-independent ?-genvalue problem to the
Hilbert space formulation, and hence its logical autonomy; formulates Darboux isospectral systems
in phase space; establishes the covariant transformation rule for general nonlinear canonical trans-
formations (with reliance on the classic work of P Dirac, Phys Z Sowjetunion 3 (1933) 64); and thus
furnishes explicit solutions of nontrivial practical problems on first principles, without recourse to
the Hilbert space formulation. Efficient techniques, e.g. for perturbation theory, are based on gen-
erating functions for complete sets of Wigner functions in T Curtright, T Uematsu, and C Zachos, J
Math Phys 42 (2001) 2396-2415.

M Hug, C Menke, and W Schleich, Phys Rev A57 (1998) 3188-3205; ibid 3206-3224
introduce techniques for numerical solution of ?-equations on a basis of Chebyshev polynomials.

A writeup close to this talk found in C Zachos, Int J Mod Phys A17 (2002) 297-316 [hep-th/0110114] and a
forthcoming book (World Scientific, 2004) by Zachos, Fairlie and Curtright, “Quantum Mechanics in Phase
Space” c©1998, 2004 C K Zachos
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